Apoptosis is promoted by the dsRNA-activated factor (DRAF1) during viral infection independent of the action of interferon or p53.
نویسندگان
چکیده
An apoptotic cellular defense mechanism is triggered in response to viral dsRNA generated during the course of infection by many DNA and RNA viruses. We demonstrate that apoptosis induced by dsRNA or a paramyxovirus is independent of the action of interferon as it can proceed in a variety of cell lines and primary cells deficient in an interferon response. Initiation of apoptosis appears to be triggered by activation of a cellular transcription factor, the dsRNA-activated factor (DRAF1). DRAF1 is composed of interferon regulatory factor 3 (IRF-3) and the transcriptional coactivators CREB binding protein (CBP) or p300. We find that activation of IRF-3 in the absence of viral infection stimulates apoptosis. In addition, a negative interfering mutant blocks both target gene induction and apoptosis, demonstrating a requirement for gene expression by IRF-3/DRAF1 to promote apoptosis. IRF-3/DRAF1 target gene expression is also induced in response to a distinct apoptotic stimulus, the DNA damaging agent etoposide. The activity of the p53 tumor suppressor does not appear to be required for IRF-3/DRAF1-mediated apoptosis.
منابع مشابه
Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملRegulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1.
Viral double-stranded RNA (dsRNA) generated during the course of infection leads to the activation of a latent transcription factor, dsRNA-activated factor 1 (DRAF1). DRAF1 binds to a DNA target containing the type I interferon-stimulated response element and induces transcription of responsive genes. DRAF1 is a multimeric transcription factor containing the interferon regulatory factor 3 (IRF-...
متن کاملEffect of Activation and Inhibition of Cellular PKR on Coxsackievirus B3 Replication
The ds-RNA activated protein kinase (PKR) is a serine-threonine kinase with MW of 68 KDa. It belongs to a family of kinases that control one of the translational initiation factors, eIF2. PKR is produced at high level in response to viral infection. This protein by phosphorylating eIF2 inhibits cellular protein synthesis. In this study, the effect of gamma interferon (IFN-γ), an activator, and ...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2001